492 research outputs found

    Experimental evidence on the development of scale invariance in the internal structure of self-affine aggregates

    Full text link
    It is shown that an alternative approach for the characterization of growing branched patterns consists of the statistical analysis of frozen structures, which cannot be modified by further growth, that arise due to competitive processes among neighbor growing structures. Scaling relationships applied to these structures provide a method to evaluate relevant exponents and to characterize growing systems into universality classes. The analysis is applied to quasi-two-dimensional electrochemically formed silver branched patterns showing that the size distribution of frozen structures exhibits scale invariance. The measured exponents, within the error bars, remind us those predicted by the Kardar-Parisi-Zhang equation.Comment: 11 pages, 4 figure

    Magnetic field-induced phase transitions in a weakly coupled s = 1/2 quantum spin dimer system Ba3_{3}Cr2_{2}O8_{8}

    Full text link
    By using bulk magnetization, electron spin resonance (ESR), heat capacity, and neutron scattering techniques, we characterize the thermodynamic and quantum phase diagrams of Ba3_3Cr2_2O8_8. Our ESR measurements indicate that the low field paramagnetic ground state is a mixed state of the singlet and the Sz_z = 0 triplet for H⊄cH \perp c. This suggests the presence of an intra-dimer Dzyaloshinsky-Moriya (DM) interaction with a DM vector perpendicular to the c-axis

    Magnetoelastic and structural properties of azurite Cu3(CO3)2(OH)2 from neutron scattering and muon spin rotation

    Full text link
    Azurite, Cu3(CO3)2(OH)2, has been considered an ideal example of a one-dimensional (1D) diamond chain antiferromagnet. Early studies of this material imply the presence of an ordered antiferromagnetic phase below TN∌1.9T_N \sim 1.9 K while magnetization measurements have revealed a 1/3 magnetization plateau. Until now, no corroborating neutron scattering results have been published to confirm the ordered magnetic moment structure. We present recent neutron diffraction results which reveal the presence of commensurate magnetic order in azurite which coexists with significant magnetoelastic strain. The latter of these effects may indicate the presence of spin frustration in zero applied magnetic field. Muon spin rotation, ÎŒ\muSR, reveals an onset of short-range order below 3K and confirms long-range order below TNT_N.Comment: 5 pages, 4 figures, PHYSICAL REVIEW B 81, 140406(R) (2010

    Porous silicon formation and electropolishing

    Full text link
    Electrochemical etching of silicon in hydrofluoride containing electrolytes leads to pore formation for low and to electropolishing for high applied current. The transition between pore formation and polishing is accompanied by a change of the valence of the electrochemical dissolution reaction. The local etching rate at the interface between the semiconductor and the electrolyte is determined by the local current density. We model the transport of reactants and reaction products and thus the current density in both, the semiconductor and the electrolyte. Basic features of the chemical reaction at the interface are summarized in law of mass action type boundary conditions for the transport equations at the interface. We investigate the linear stability of a planar and flat interface. Upon increasing the current density the stability flips either through a change of the valence of the dissolution reaction or by a nonlinear boundary conditions at the interface.Comment: 18 pages, 8 figure

    The Swift Surge of Perovskite Photovoltaics

    Get PDF
    The breakthrough early 1990s dye sensitization of mesoscopic TiO2 films along with a regenerative iodide redox couple led to the explosive growth of dye-sensitized solar cell (DSC) research. The pioneering work of GrĂ€tzel and colleagues also made it possible to develop a solid-state DSSC with spiro-oMETAD as the hole conductor and thus replace the liquid electrolyte in the cell. Research efforts of Konenkamp and others further initiated the search for the “extremely thin absorber” (ETA) nanostructured solar cell, using TiO2 as the electron conductor, an inorganic absorber, and a hole conductor. Another major research thrust was by Weller, Kamat, Zaban, Nozik, Hodes, and others, who employed inorganic quantum dots (e.g., CdS and CdSe) as sensitizers. While discussing developments in sensitized solar cells, it is important to note the contributions of early visionaries like Gerischer, Sutin, and Bard, who were first to establish the concepts of sensitization using dye molecules and semiconductor nanostructures

    Microtiming patterns and interactions with musical properties in Samba music

    Get PDF
    In this study, we focus on the interaction between microtiming patterns and several musical properties: intensity, meter and spectral characteristics. The data-set of 106 musical audio excerpts is processed by means of an auditory model and then divided into several spectral regions and metric levels. The resulting segments are described in terms of their musical properties, over which patterns of peak positions and their intensities are sought. A clustering algorithm is used to systematize the process of pattern detection. The results confirm previously reported anticipations of the third and fourth semiquavers in a beat. We also argue that these patterns of microtiming deviations interact with different profiles of intensities that change according to the metrical structure and spectral characteristics. In particular, we suggest two new findings: (i) a small delay of microtiming positions at the lower end of the spectrum on the first semiquaver of each beat and (ii) systematic forms of accelerando and ritardando at a microtiming level covering two-beat and four-beat phrases. The results demonstrate the importance of multidimensional interactions with timing aspects of music. However, more research is needed in order to find proper representations for rhythm and microtiming aspects in such contexts

    Dirac Strings and Magnetic Monopoles in Spin Ice Dy2Ti2O7

    Get PDF
    While sources of magnetic fields - magnetic monopoles - have so far proven elusive as elementary particles, several scenarios have been proposed recently in condensed matter physics of emergent quasiparticles resembling monopoles. A particularly simple proposition pertains to spin ice on the highly frustrated pyrochlore lattice. The spin ice state is argued to be well-described by networks of aligned dipoles resembling solenoidal tubes - classical, and observable, versions of a Dirac string. Where these tubes end, the resulting defect looks like a magnetic monopole. We demonstrate, by diffuse neutron scattering, the presence of such strings in the spin-ice Dy2Ti2O7. This is achieved by applying a symmetry-breaking magnetic field with which we can manipulate density and orientation of the strings. In turn, heat capacity is described by a gas of magnetic monopoles interacting via a magnetic Coulomb interaction.Comment: 32 pages (19 pages of article, 13 pages of supporting online material

    Photoelectrochemical properties of mesoporous NiOx deposited on technical FTO via nanopowder sintering in conventional and plasma atmospheres

    Get PDF
    Nanoporous nickel oxide (NiO x ) has been deposited with two different procedures of sintering (CS and RDS). Both samples display solid state oxidation at about 3.1 V vs Li+/Li. Upon sensitization of CS/RDS NiO x with erythrosine b (ERY), nickel oxide oxidation occurs at the same potential. Impedance spectroscopy revealed a higher charge transfer resistance for ERY-sensitized RDS NiO x with respect to sensitized CS NiO x . This was due to the chemisorption of a larger amount of ERY on RDS with respect to CS NiO x . Upon illumination the photoinduced charge transfer between ERY layer and NiO x could be observed only with oxidized CS. Photoelectrochemical effects of sensitized RDS NiO x were evidenced upon oxide reduction. With the addition of iodine RDS NiOx electrodes could give the reduction iodine → iodide in addition to the reduction of RDS NiO x . p-type dye sensitized solar cells were assembled with RDS NiO x photocathodes sensitized either by ERY or Fast Green. Resulting overall efficiencies ranged between 0.02 and 0.04 % upon irradiation with solar spectrum simulator (Iin : 0.1 W cm −2 )

    Physicochemical Characterization of Passive Films and Corrosion Layers by Differential Admittance and Photocurrent Spectroscopy

    Get PDF
    Two different electrochemical techniques, differential admittance and photocurrent spectroscopy, for the characterization of electronic and solid state properties of passive films and corrosion layers are described and critically evaluated. In order to get information on the electronic properties of passive film and corrosion layers as well as the necessary information to locate the characteristic energy levels of the passive film/electrolyte junction like: flat band potential (Ufb), conduction band edge (EC) or valence band edge (EV), a wide use of Mott-Schottky plots is usually reported in corrosion science and passivity studies. It has been shown, in several papers, that the use of simple M-S theory to get information on the electronic properties and energy levels location at the film/electrolyte interface can be seriously misleading and/or conflicting with the physical basis underlying the M-S theory. A critical appraisal of this approach to the study of very thin and thick anodic passive film grown on base-metals (Cr, Ni, Fe, SS etc..) or on valve metals (Ta, Nb, W etc..) is reported in this work, together with possible alternative approach to overcome some of the mentioned inconsistencies. At this aim the theory of amorphous semiconductor Schottky barrier, introduced several years ago in the study of passive film/electrolyte junction, is reviewed by taking into account some of the more recent results obtained by the present authors. Future developments of the theory appears necessary to get more exact quantitative information on the electronic properties of passive films, specially in the case of very thin film like those formed on base metals and their alloys. The second technique described in this chapter, devoted to the physico-chemical characterization of passive film and corrosion layers, is a more recent technique based on the analysis of the photo-electrochemical answer of passive film/electrolyte junction under illumination with photons having suitable energy. Such a technique usually referred to as Photocurrent Spectroscopy (PCS) has been developed on the basis of the large research effort carried out by several groups in the 1970’s and aimed to investigate the possible conversion of solar energy by means of electrochemical cells. In this work the fundamentals of semiconductor/electrolyte junctions under illumination will be highlighted both for crystalline and amorphous materials. The role of amorphous nature and film thickness on the photo-electrochemical answer of passive film/solution interface is reviewed as well the use of PCS for quantitative analysis of the film composition based on a semi-empirical correlation between optical band gap and difference of electronegativity of film constituents previously suggested by the present authors. In this frame the results of PCS studies on valve metal oxides and valve metal mixed oxides will be discussed in order to show the validity of the proposed method. The results of PCS studies aimed to get information on passive film composition and carried out by different authors on base metals (Fe, Cr, Ni) and their alloys, including stainless steel, will be also compared with compositional analysis carried out by well-established surface analysis techniques
    • 

    corecore